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Loading of number of rocks (pegmatite, granite, en-
statitite, wollastonitite, skarn, amphibolite, mica-quartz
schist, biotite-amphibole plagiogneiss) with shock waves
was carried out by the method of RFNC-VNIITF [1-3].
Experimental samples were prepared as spheres of about
50 mm in diameter. This sphere was sealed into the steel
hermetic case. A layer of explosive was put on the case
surface. The detonation of the explosive created a spheri-
cal convergent shock wave. An amplitude of strains was
20 GPa on the case surface and 250 GPa at 1 mm from the
center of the sample. Duration of an impulse was 1-2×10-6

sec. Data obtained in the experiment are in a good agree-
ment with observations on impactites. A multi-level crys-
talochemical control (CC) of the material migration during
the shock-wave loading up to its melting was recognized.

The first level of CC is reflected in subdivision of
crystalline compounds into two groups: 1) ring and frame-
work silicates and alumosilicates are amorphized (trans-
formation into diaplect glasses), 2) other rock-forming
minerals are affected by shock-thermal decomposition
(STD) (replacement by aggregates of newly formed min-
erals with complete preservation of a shape of an initial
crystal). Both in the nature and in the experiment, diaplect
glasses were found after quartz, plagioclase, K-feldspar,
cordierite [4]. The amorphization of scapolite and epidote
was also identified in the experiment. Both in the nature
and in the experiment, the shock-thermal decomposition is
known for diverse minerals: biotite, amphibole, pyroxenes,
garnet, staurolite, etc. [4, 5].

The second level of CC determines a value of shock
strains, at which STD starts. It increases from the mineral
with distinct inhomogeneity of crystalline lattice (for in-
stance, schist alumosilicate biotite) to more homogeneous
compounds (for instance, sub-frame-work silicate garnet).

The third level of CC establishes a sequence of mi-
gration of cations from a crystalline lattice, where the ca-
tions occupy different sites. In general, this sequence is
determined by coordination number (CN) of a cation in
some mineral. The following sequence of cation migration
can be induced: potassium from biotite (CN=12), potas-
sium and sodium from feldspars (CN=10), calcium from
feldspars (CN=8), manganese and iron from garnet
(CN=8), aluminum from staurolite, magnesium from bi-
otite, iron from biotite and staurolite (CN=6). In the sepa-
rate mineral, the migration starts from the less bounded
cations (for example, Fe2+ and Ca2+ in the M1 site of py-
roxenes), while the migration of cations in symmetrical
sites (Mg2+ in the M2 site of pyroxenes) is not statistically
significant. Silicon and aluminum in tetrahedral sites
(CN=4) retain their position up to melting, despite the re-

moval of more than 50 % of cations (that, apparently, ex-
plains the preservation of crystal shape).

The forth level of CC composes a dependence of an
intensity of cation migration on their sizes. At other con-
ditions being equal, if cations occupy the same site, the
smallest cation migrates more readily. So, iron from clino-
pyroxene (ri = 0.80 Å) migrates faster than calcium (ri =
1.04 Å); iron from garnet migrates faster than manganese
(ri = 0.91 Å); aluminum (ri = 0.57 Å) leaves staurolite
more readily than iron (ri = 0.67 Å); sodium (ri = 0.98 Å)
leaves feldspars faster than potassium (ri = 1.33 Å).
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