Safonov O.G.¹, Litvin Yu.A.¹, Perchuk L.L². Potassium-bearing clinopyroxene in the systems diopside-leucite and diopside-leucite- $K_2Ca(CO_3)_2$ at P=7 GPa.

¹Institute of Experimental Mineralogy RAS (IEM RAS) ² Moscow State University (MSU), Geological Department

key words: [potassium-bearing clinopyroxene, ultra-high pressure experiment, alumino-silicate and carbonate-silicate melts, mantle]

Clinopyroxene containing up to 1.5 wt. % K_2O (*KCpx*) is known as a diamond satellite mineral from kimberlites and limproites [e.g. 6, 10, 12], as well as in ultra-high pressure rocks of the Kokchetav Complex (N. Kazakhstan) [2, 11]. According to natural and experimental data *KCpx* is an indicator both high pressure and high potassium activity in mantle melts or fluids [3, 5, 9].

Cation K, whose radius at normal pressure is 1.51Å, becomes commensurable to Ca (1.12Å) and Na (1.18Å) cations at P>5 GPa. That is a reason for its incorporation into clinopyroxene only at ultra-high pressure. Replacement of Ca by K in the M2 site occurs by the scheme (Mg, Fe)^{M1}Ca^{M2} \Leftrightarrow (Al, Cr)^{M1}K^{M2} [2, 4, 5, 7]. Thus, the system CaMgSi₂O₆-KAlSi₂O₆ is a simplest model for *KCpx*, whose study is necessary for description of thermodynamic properties of the potassium clinopyroxene solid solution.

A purpose of the experimental study of the system CaMgSi₂O₆-KAlSi₂O₆±K₂Ca(CO₃)₂ was to identify phase equilibria with participation of *KCpx*, to determine a maximal solubility of KAlSi₂O₆ component in diopside, and to estimate an influence of carbonate on it. The experiments were carried out at P=7 GPa and T=980-1650°C using an "anvil-with-hole" assembly [1].

The phase diagram for the pseudo-binary system $CaMgSi_2O_6$ -KAlSi_2O_6 was constructed on the basis of the experiments. According to the diagram, KCpx (CaMgSi₂O₆-KAlSi₂O₆ solid solution) is a liquidus phase at the KAlSi₂O₆ content in the system below 70 mol. %. The K₂O content in clinopyroxene at liquidus $(\sim 1600^{\circ}\text{C})$ is up to 2.5 wt. % (see Table). At higher KAlSi₂O₆ content, clinopyroxene disappears and gives place to pyrope-grossular garnet. At solidus (~1300°C), KCpx coexisting with garnet (Grt), kalsilite and Siwadeite (SWd) contains up to 5.5 wt. % K₂O (Fig. 1a, Table). This is the maximal K₂O content in clinopyroxene ever produced experimentally, including carbonatesilicate systems [5, 8]. At T, P, and Di/Lc ratio being equal, K_2O concentration in *KCpx* from the system with 15 mol. % K₂Ca(CO₃)₂ is found to be higher by ~ 1 wt. % (Fig. 1b, Table) in comparison to the carbonate-free system.

Fig. 1. Potassium-bearing clinopyroxene in the run products in the systems $CaMgSi_2O_6$ -KAlSi_2O_6 and $CaMgSi_2O_6$ -KAlSi_2O_6-K_2Ca(CO_3)_2 at P = 7 GPa. a) Ultra-potassic *KCpx* coexisting with *Grt* in the solidus of the system CaMgSi_2O_6-KAlSi_2O_6-KAlSi_2O_6. b) *KCpx* coexisting with *SWd* in carbonate matrix in the sub-liquidus of the system CaMgSi_2O_6-KAlSi_2O_6-K_2Ca(CO_3)_2.

Fig. 2. Correlation between K^{M1} and Al^{M2} in *KCpx* from the experiments in the systems CaMgSi₂O₆-KAlSi₂O₆ (filled squares) и CaMgSi₂O₆-KAlSi₂O₆-K₂Ca(CO₃)₂ (filled circles) at P = 7 GPa.

Al in position M1 on KCpx

Table. Representative analyses of potassium-bearing clinopyroxenes produced experimentally in the systems CaM gSi_2O_6 -KAlSi₂O₆ and CaMgSi₂O₆-KAlSi₂O₆-K₂Ca(CO₃)₂ at P = 7 GPa.

Run N	688			650		611		612		
Conditions	$Di_{40}Lc_{60},$	1310 ^o C		$Di_{30}Lc_{70},$	1350 ^o C	$Di_{50}Lc_{50}$,	1600 ^o C	$Di_{42.5}Lc_{42.5}K$ CC_{15}	1600 ^o C	
SiO ₂	54.89	54.71	54.98	54.07	54.15	55.67	56.01	55.32	54.78	55.19
Al ₂ O ₃	7.54	7.29	7.88	5.22	4.9	3.39	1.04	2.95	2.82	3.35
MgO	13.36	13.3	13.4	16.4	16.5	15.69	18.46	16.94	15.78	15.5
CaO	19.3	19.24	18.39	22.42	22.71	22.02	23.74	22.3	24.32	22.14
K ₂ O	4.96	5.46	5.34	1.57	1.42	2.53	1.05	2.29	2.34	3.6
Total	100	100	100	99.67	99.67	99.29	100.31	99.8	100	99.78
Formulae p	oer 6 O ator	ns								
Si	1.975	1.975	1.976	1.941	1.945	2.013	2.006	1.992	1.987	1.999
Al	0.319	0.31	0.334	0.221	0.207	0.144	0.044	0.125	0.121	0.143
Mg	0.716	0.715	0.717	0.877	0.883	0.845	0.985	0.908	0.841	0.836
Ca	0.746	0.744	0.708	0.862	0.873	0.853	0.911	0.86	0.945	0.859
К	0.225	0.251	0.245	0.072	0.065	0.117	0.048	0.105	0.108	0.166
Total	3.978	3.995	3.98	3.973	3.973	3.972	3.994	3.99	4.002	4.003
Al ^{IV}	0.025	0.025	0.024	0.059	0.055	0	0	0.008	0.013	0.001
Al ^{VI}	0.294	0.285	0.31	0.162	0.152	0.144	0.044	0.117	0.107	0.142
Mg ^{M1}	0.706	0.714	0.69	0.838	0.848	0.856	0.956	0.883	0.893	0.86
Mg ^{M2}	0.01	0.003	0.027	0.039	0.035	0	0.029	0.026	0	0

KCpx from the both systems shows a direct correlation of Al^{M1} with K^{M2} (Fig. 2). That corresponds to multi-site isomorphism $Mg^{M1}Ca^{M2} \Leftrightarrow Al^{M1}K^{M2}$. These results show, that, apparently, there is no difference between the mechanisms of potassium incorporation into KCpx in alumino-silicate and carbonate-silicate systems. Difference in potassium concentrations in KCpx in these systems is due to different properties of coexisting melts, that has been shown earlier [9].

The study is accomplished under support of Russian Foundation for Basic Research (projects 99-05-65451, 01-05-64775, and 01-05-06139), the Program for young scientists of RAS (project № 323), project 00-15-98519 "Leading Russian Scientific Schools", and the Federal Program "Integration" (project A0113).

1. Litvin Yu. A. Physico-chemical study of melting deep-seated substance of the Earth. Moscow: Nauka, 1991. 310 p.

- 2. Perchuk L.L., Sobolev N.V., Shatskiy V.S., Yapaskurt V.O. Relics of potassium pyroxenes from diamond-free pyroxene-garnet rocks of the Kokchetav Complex (Northern Kazakhstan) // Doklady RAN. 1996. V. 348, no. 6. P. 790-795.
- 3. Perchuk L.L., Yapaskurt V.O. Mantle-derived ultrapotassic liquids // Russian Geology and Geophysics. 1998. V. 39, no. 12, P. 1746-1755.
- 4. Edgar A.D., Vukadinovic D. Potassium-rich clinopyroxene in the mantle: an experimental investigation of K-rich lamproite up to 60 kbar // Geochim. Cosmochim. Acta. 1993. Vol. 57. P. 5063-5072.
- 5. Harlow G.E. K in clinopyroxene at high pressure and temperature: an experimental study // Am. Mineral. 1997. Vol. 82, P. 259-269.

References:

- Harlow G.E., Veblen D.R. Potassium in clinopyroxene inclusions from diamonds // Science. 1991. Vol. 251. P. 652-655.
- Luth R.W. Potassium in clinopyroxene at high pressure: experimental constraints // EOS Trans. Am. Geophys. Union. 1992. Vol. 73, P. 608.
- Matveev Y.A., Litvin Y.A., Perchuk L.L., Chudinovskikh L.T., Yapaskurt, V.O. Intensive carbonatesilicate reactions in the K₂Mg(CO₃)₂ (Ca_{0.5}Mg_{0.5})SiO₃-Al₂O₃ system in experiment at 7 GPa: relation to Kokchetav-type diamond deposits // Terra nova. 1998. Vol. 10, Terra Abstracts, Supplement 1, P. 39.
- Perchuk L.L., Safonov O.G., Yapaskurt V.O., Barton J.M., Jr. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicators of mantlederived ultrahigh-potassic liquids: an analytical review // Lithos. 2001. in press.
- Reid A.M., Brown R.W., Dawson J.B., Whitfield G.G., Siebert J.C. Garnet and pyroxene compositions in some diamondiferous eclogites // Contrib. Mineral. Petrol. 1976. Vol. 58. P. 203-220.
- Sobolev N.V., Shatsky V.S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation // Nature. 1990. Vol. 343. P. 742-746.
- Stachel T., Brey G.P., Harris J.W. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone // Contrib. Mineral. Petrol. 2000. Vol. 140. P. 1-15.

25